Technical Analysis of 2012 MozPay API Message Format

The W3C Web Payments group is currently analyzing a new API for performing payments via web browsers and other devices connected to the web. This blog post is a technical analysis of the MozPay API with a specific focus on the payment protocol and its use of JOSE (JSON Object Signing and Encryption). The first part of the analysis takes the approach of examining the data structures used today in the MozPay API and compares them against what is possible via PaySwarm. The second part of the analysis examines the use of JOSE to achieve the use case and security requirements of the MozPay API and compares the solution to JSON-LD, which is the mechanism used to achieve the use case and security requirements of the PaySwarm specification.

Before we start, it’s useful to have an example of what the current MozPay payment initiation message looks like. This message is generated by a MozPay Payment Provider and given to the browser to initiate a native purchase process:

jwt.encode({
  "iss": APPLICATION_KEY,
  "aud": "marketplace.firefox.com",
  "typ": "mozilla/payments/pay/v1",
  "iat": 1337357297,
  "exp": 1337360897,
  "request": {
    "id": "915c07fc-87df-46e5-9513-45cb6e504e39",
    "pricePoint": 1,
    "name": "Magical Unicorn",
    "description": "Adventure Game item",
    "icons": {
      "64": "https://yourapp.com/img/icon-64.png",
      "128": "https://yourapp.com/img/icon-128.png"
    },
    "productData": "user_id=1234&my_session_id=XYZ",
    "postbackURL": "https://yourapp.com/payments/postback",
    "chargebackURL": "https://yourapp.com/payments/chargeback"
  }
}, APPLICATION_SECRET)

The message is effectively a JSON Web Token. I say effectively because it seems like it breaks the JWT spec in subtle ways, but it may be that I’m misreading the JWT spec.

There are a number of issues with the message that we’ve had to deal with when creating the set of PaySwarm specifications. It’s important that we call those issues out first to get an understanding of the basic concerns with the MozPay API as it stands today. The comments below use the JWT code above as a reference point.

Unnecessarily Cryptic JSON Keys

...
  "iss": APPLICATION_KEY,
  "aud": "marketplace.firefox.com",
  "typ": "mozilla/payments/pay/v1",
  "iat": 1337357297,
  "exp": 1337360897,
...

This is more of an issue with the JOSE specs than it is the MozPay API. I can’t think of a good line of argumentation to shorten things like ‘issuer’ to ‘iss’ and ‘type’ to ‘typ’ (seriously :) , the ‘e’ was too much?). It comes off as 1980s protocol design, trying to save bits on the wire. Making code less readable by trying to save characters in a human-readable message format works against the notion that the format should be readable by a human. I had to look up what iss, aud, iat, and exp meant. The only reason that I could come up with for using such terse entries was that the JOSE designers were attempting to avoid conflicts with existing data in JWT claims objects. If this was the case, they should have used a prefix like “@” or “$”, or placed the data in a container value associated with a key like ‘claims’.

PaySwarm always attempts to use terminology that doesn’t require you to go and look at the specification to figure out basic things. For example, it uses creator for iss (issuer), validFrom for iat (issued at), and validUntil for exp (expire time).

iss and APPLICATION_KEY

...
  "iss": APPLICATION_KEY,
...

The MozPay API specification does not require the APPLICATION_KEY to be a URL. Since it’s not a URL, it’s not discoverable. The application key is also specific to each Marketplace, which means that one Marketplace could use a UUID, another could use a URL, and so on. If the system is intended to be decentralized and interoperable, the APPLICATION_KEY should either be dereferenceable on the public Web without coordination with any particular entity, or a format for the key should be outlined in the specification.

All identities and keys used in digital signatures in PaySwarm use URLs for the identifiers that must contain key information in some sort of machine-readable format (RDFa and JSON-LD, for now). This means that 1) they’re Web-native, 2) they can be dereferenced, and 3) when they’re dereferenced, a client can extract useful data from the document retrieved.

Audience

...
  "aud": "marketplace.firefox.com",
...

It’s not clear what the aud parameter is used for in the MozPay API, other than to identify the marketplace.

Issued At and Expiration Time

...
  "iat": 1337357297,
  "exp": 1337360897,
...

The iat (issued at) and exp (expiration time) values are encoded in the number of seconds since January 1st, 1970. These are not very human readable and make debugging issues with purchases more difficult than they need to be.

PaySwarm uses the W3C Date/Time format, which are human-readable strings that are also easy for machines to process. For example, November 5th, 2013 at 1:15:30 AM (Zulu / Universal Time) is encoded as: 2013-11-05T13:15:30Z.

The Request

...
  "request": {
    "id": "915c07fc-87df-46e5-9513-45cb6e504e39",
    "pricePoint": 1,
    "name": "Magical Unicorn",
...

This object in the MozPay API is a description of the thing that is to be sold. Technically, it’s not really a request. The outer object is the request. There is a big of a conflation of terminology here that should probably be fixed at some point.

In PaySwarm, the contents of the MozPay request value is called an Asset. An asset is a description of the thing that is to be sold.

Request ID

...
{
  "request": {
    "id": "915c07fc-87df-46e5-9513-45cb6e504e39",
...

The MozPay API encodes the request ID as a universally unique identifier (UUID). The major downside to this approach is that other applications can’t find the information on the Web to 1) discover more about the item being sold, 2) discuss the item being sold by referring to it by a universal ID, 3) feed it to a system that can read data published at the identifier address, and 4) index it for the purposes of searching.

The PaySwarm specifications use a URL for the identifier for assets and publish machine-readable data at the asset location so that other systems can discover more information about the item being sold, refer to the item being sold in discussions (like reviews of the item), start a purchase by referencing the URL, index the item being sold such that it may be utilized in price-comparison/search engines.

Price Point

...
  "request": {
...
    "pricePoint": 1,
...

The pricePoint for the item being sold is currently a whole number. This is problematic because prices are usually decimal numbers including a fraction and a currency.

PaySwarm publishes its pricing information in a currency agnostic way that is compatible with all known monetary systems. Some of these systems include USD, EUR, JYP, RMB, Bitcoin, Brixton Pound, Bernal Bucks, Ven, and a variety of other alternative currencies. The amount is specified as a decimal with fraction and a currency URL. A URL is utilized for the currency because PaySwarm supports arbitrary currencies to be created and managed external to the PaySwarm system.

Icons

...
  "request": {
...
    "icons": {
      "64": "https://yourapp.com/img/icon-64.png",
      "128": "https://yourapp.com/img/icon-128.png"
    },
...

Icon data is currently modeled in a way that is useful to developers by indexing the information as a square pixel size for the icon. This allows developers to access the data like so: icons.64 or icons.128. Values are image URLs, which is the right choice.

PaySwarm uses JSON-LD and can support this sort of data layout through a feature called data indexing. Another approach is to just have an array of objects for icons, which would allow us to include extended information about the icons. For example:

...
  "request": {
...
  "icon": [{size: 64, id: "https://yourapp.com/img/icon-64.png", label: "Magical Unicorn"}, ...]
...

Product Data

...
  "request": {
...
    "productData": "user_id=1234&my_session_id=XYZ",
...

If the payment technology we’re working on is going to be useful to society at large, we have to allow richer descriptions of products. For example, model numbers, rich markup descriptions, pictures, ratings, colors, and licensing terms are all important parts of a product description. The value needs to be larger than a 256 byte string and needs to support decentralized extensibility. For example, Home Depot should be able to list UPC numbers and internal reference numbers in the asset description and the payment protocol should preserve that extra information, placing it into digital receipts.

PaySwarm uses JSON-LD and thus supports decentralized extensibility for product data. This means that any vendor may express information about the asset in JSON-LD and it will be preserved in all digital contracts and digital receipts. This allows the asset and digital receipt format to be used as a platform that can be built on top of by innovative retailers. It also increases data fidelity by allowing far more detailed markup of asset information than what is currently allowed via the MozPay API.

Postback URL

...
  "request": {
...
    "postbackURL": "https://yourapp.com/payments/postback",
...

The postback URL is a pretty universal concept among Web-based payment systems. The payment processor needs a URL endpoint that the result of the purchase can be sent to. The postback URL serves this purpose.

PaySwarm has a similar concept, but just lists it in the request URL as ‘callback’.

Chargeback URL

...
  "request": {
...
    "chargebackURL": "https://yourapp.com/payments/chargeback"
...

The chargeback URL is a URL endpoint that is called whenever a refund is issued for a purchased item. It’s not clear if the vendor has a say in whether or not this should be allowed for a particular item. For example, what happens when a purchase is performed for a physical good? Should chargebacks be easy to do for those sorts of items?

PaySwarm does not build chargebacks into the core protocol. It lets the merchant request the digital receipt of the sale to figure out if the sale has been invalidated. It seems like a good idea to have a notification mechanism build into the core protocol. We’ll need more discussion on this to figure out how to correctly handle vendor-approved refunds and customer-requested chargebacks.

Conclusion

There are a number of improvements that could be made to the basic MozPay API that would enable more use cases to be supported in the future while keeping the level of complexity close to what it currently is. The second part of this analysis will examine the JavaScript Object Signature and Encryption (JOSE) technology stack and determine if there is a simpler solution that could be leveraged to simplify the digital signature requirements set forth by the MozPay API.

[UPDATE: The second part of this analysis is now available]

2 Comments

Got something to say? Feel free, I want to hear from you! Leave a Comment

  1. Kumar McMillan says:

    Nice review, thanks for writing it up. Just some quick notes:
    - Apps that do purchases with mozPay() aren’t always hosted, they might be packaged. So I don’t know if we could use a URL as the issuer, but maybe.
    - We treat the issuer ID as a revocable payment key so that might have some implications — a revoked one must be regenerated if the merchant gets re-activated.
    - I like the sound of currency URLs, I’d like to check out an example of that
    - Expanding product data makes a lot of sense for decentralization. It was originally meant for not much more than product_id=123 so the merchant can link back to their own database. However, we are already abusing it to pass Marketplace data around :)
    - Product IDs were again meant mostly for merchant reconciliation, not distribution. Right now they only have to be unique per merchant, not unique within all merchants.

Trackbacks for this post

  1. JSON-LD Signatures vs. JOSE/JWS/JWT | The Beautiful, Tormented Machine

Leave a Comment

Let us know your thoughts on this post but remember to play nicely folks!